

Converting a Rhythmyx Implementation to Use
Version 6.5 Features

About Converting to Rhythmyx Version 6.5 Features .. 2
Assumptions .. 2
Reference Server ... 2
Preparing to Implement the Conversion.. 2
Converting Content Lists to Use JCR Queries .. 3

Implementing the Enterprise Investments Full Binary Content List 4
Implementing the Enterprise Investments Non-binary Content List 6
Implementing the Enterprise Investments Incremental Content List 7
Implementing the Enterprise Investments Unpublish Content List... 7
Updating Editions.. 7
Handling Default Variants... 9

Converting Location Schemes to Use JEXL ... 9
JEXL Variables Commonly Used in Location Schemes... 11
JEXL Functions Commonly Used in Location Schemes .. 12

Converting to Velocity Assembly ... 14
Implementing Managed Navigation Templates in Velocity.. 14
Converting Global Templates to Velocity... 14
Updating Slots ... 18
Converting Local Variants to Velocity Templates .. 18

Percussion Software Copyright 2007 1

 Converting to Rhythmyx Version 6.5 Features

About Converting to Rhythmyx Version 6.5 Features
Once you complete the stabilization tasks described in Upgrading to Rhythmyx Version 6.5, you
can operate your system without further intervention. Rhythmyx Version 6.5 includes three
features that offer improvements in performance and maintainability, however, so you may want
to consider converting your system to use these features:

 Content Lists based on Java Content Repository (JCR) queries rather than on
Rhythmyx XML applications;

 Location Schemes based on Java Expression Languages (JEXL) expressions; and
 Assembly based on Velocity Templates rather than XSLT Stylesheets.

This document explains how to convert your implementation to use these features.

NOTE: To illustrate all procedures in this document, we will assume an upgrade of the standard
FastForward installation on Rhythmyx Version 5.7 to Rhythmyx Version 6.5.

Assumptions
The procedures in this document assume that:

 You have already upgraded your system from Rhythmyx Version 5.7 or earlier and
have stabilized the upgraded system. If you have not already upgraded your system,
see Upgrading_to_Rhythmyx_Version_6_0.pdf, the upgrade and stabilize your
system before proceeding.

 You publish to one site or a small group of sites.
 You publish HTML or XML.
 You use Site Folder Publishing. If you do not use Site Folder Publishing, you will

need to re-implement your system in Rhythmyx Version 6.5 to use that feature rather
than converting your existing implementation.

Reference Server
Percussion Software recommends that you install a separate Rhythmyx Version 6.5 Server with
FastForward to serve as a reference implementation. You can refer to the implementation of the
Content Lists and Velocity Templates in the reference server as an example implementation of
these features in Rhythmyx Version 6.5.

Percussion Software will provide an evaluation license of Rhythmyx Version 6.5 for your
reference server. Contact your Percussion Software Sales Account Representative to request this
license.

Preparing to Implement the Conversion
Before starting the conversion implementation, attend training on Rhythmyx Version 6.5 to learn
about the new features in this release. Then plan your conversion:

 Read this document to the end.
 Determine the resources that you will need to complete the conversion.
 Secure and allocate these resources.

Next, set up an implementation environment (if you did not already do so for the initial upgrade
to Rhythmyx Version 6.5). Build a complete copy of your production environment:

Percussion Software 2

 Converting to Rhythmyx Version 6.5 Features

1 Use a copy of your production server tree and a dump of your production database.
2 Set up a Web server to match your production environment
3 Test publishing and ensure that the system works as expected BEFORE beginning to

implement the conversion.
 All Content Editors work as designed.
 All Variants preview correctly and all Snippets are assembled into Pages

correctly.
 Publishing runs are completed without errors, all expected content is

published to the expected locations.
Implement your conversions in this development environment, then test them to ensure they are
behaving as expected and designed. Once the converted implementation is behaving as desired,
migrate your conversions to the production environment.

Converting Content Lists to Use JCR Queries
In Rhythmyx Version 6.5, Content Lists extract Content Items from the Repository using JCR
queries. For details about JCR queries, see “Writing Automated Slot Queries” in the Rhythmyx
Implementation Guide or “Writing Content List Queries” in the Help for the Publishing tab of
Content Explorer.

A Rhythmyx Version 6.5 Content List implemented using a JCR query has five key differences
from a Content List implemented in Rhythmyx Version 5.7 and earlier:

 A Rhythmyx Version 6.5 Content List does not require a Rhythmyx application; the
JCR query does the work of selecting the Content Items from the Repository.

 A Rhythmyx Version 6.5 Content List specifies the Rhythmyx Site Folder to be
published directly in the JCR query. In Rhythmyx Version 5.7 and earlier, the Site
Folder to be published is specified by a combination of the Edition definition and Site
registration.

 A Rhythmyx Version 6.5 Content List can specify the specific Content Types to
publish, which makes it much easier to separate the publishing of binary and
non-binary Content Items into different Content Lists. In Rhythmyx Version 5.7, to
control which Content Items were publish, you had to place Content Items that
required special attention in a specially flagged Folder; then add the
IncludeFolder HTML parameter to the Content List URL to specify whether to
publish Content Items in flagged or unflagged Folders.

 The Content List must specify a Template Expander. A Template Expander is an
extension that defines how the system will determine the Variants or Templates that
will be used to format published Content Items.

 The Content List must specify an Item Filter. An Item Filter is a collection of rules
that filters a list of available Content Items. In Content Lists, an Item Filter
substitutes for the Authorization Type (Auth Type), ensuring that only the desired
Content Items (typically Public Content Items) are published.

The FastForward implementation in Rhythmyx Version 5.7 included four Content Lists, as
illustrated in the following screenshot:

Percussion Software 3

 Converting to Rhythmyx Version 6.5 Features

Content Lists in Rhythmyx Version 5.7

When converting to use Content Lists based on JCR queries, we will need at least twice as many
Content Lists. For each Site, we will need to define the following Content Lists:

 Full publish of non-binary Content Types
 Full publish of binary Content Types
 Incremental publish
 Unpublish

Note the slight difference from the organization under Version 5.7. In that Version, the Site Root
Full Content List published all Content Items of all Content Types (binary and non-binary) on the
Site. The Site Root Unflagged published only Content Items in Folders that were not flagged
(which, in FastForward, meant only non-binary Content Types, since binary Content Types were
stored in Folders that were flagged). In Version 6.5, we are defining unique Content Lists for
binary and non-binary Content Types, and will include those Content Lists in different Editions to
control whether binary Content Types are published.

Thus, the FastForward implementation for Rhythmyx Version 6.5 includes the following Content
Lists to implement equivalent functionality to the FastFoward implementation in Rhythmyx
Version 5.7

 Corporate Investments Full Binary
 Corporate Investments Full Non-binary
 Corporate Investments Incremental
 Corporate Investments Unpublish
 Enterprise Investments Full Binary
 Enterprise Investments Full Non-binary
 Enterprise Investments Incremental
 Enterprise Investments Unpublish

Implementing the Enterprise Investments Full Binary Content List
The Content Lists for the two Sites do not differ significantly, so we will use the Enterprise
Investment Content Lists to illustrate the implementation.

We will start by implementing the Enterprise Investments Full Binary Content List. This Content
List illustrates all of the new features of JCR-query-based Content Lists with a relatively simple
query.

Percussion Software 4

 Converting to Rhythmyx Version 6.5 Features

The FastFoward implementation includes the following binary Content Types:

 File
 Image
 NavImage

So we want to implement a JCR query similar to the following statement:
Select File, Image, and NavImage Content Items from the
Enterprise Investments Site

That statement translates to the following JCR query:
Select rx:sys_contentid, rx:sys_folderid from
rx:file,rx:image,rx:navimage where jcr path like
‘//Sites/EnterpriseInvestments%’

We will name the Content List rffEiFullBinary. This name conforms to the naming conventions
devised for Rhythmyx Version 6.5. For details about design object naming conventions in
Rhythmyx Version 6.5, see “Design Object Naming Conventions” in the Rhythmyx Version 6.5
Implementation Guide.

When you create a new Content List in Rhythmyx Version 6.5, a standard URL is created
automatically. We will need to modify this URL with the name of the new Content List. In
addition, if you use an Assembly Context, you will need to specify the Assembly Context in the
URL of the Content List as the HTML parameter sys_assembly_context. For the
purposes of this exercise, we will assume that an Assembly Context has been implemented with
the ID 301.

We will use the Variants associated with the Enterprise Investments Site, which has the ID 301 to
format the published Content Items. Finally, we will need to specify an Item Filter. Since we
want to publish only Public Content Items, we will use the Public Item Filter.

To implement the Enterprise Investments Full Binary Content List:

1 Start Content Explorer and go to the Publishing tab.
2 In the left navigation, under Content Lists, click the By Name link.

Content Explorer displays the Content List editor.
3 Click the New Content List link.

Content Explorer displays the Edit Content List page with default values:

Edit Content List page with default values

Percussion Software 5

 Converting to Rhythmyx Version 6.5 Features

4 In the Name field, enter rffEiFullBinary.
5 In the URL field:

 Change the value of the sys_contentlist HTML parameter to
rffEiFullBinary: sys_contentlist=rffEiFullBinary.

 Add the sys_assembly_context HTML parameter with the value 301:
sys_assembly_context=301.

6 Leave the default values for the Type and Edition Type fields.
7 In the Generator drop list, choose the sys_SearchGenerator

(Java/global/percussion/system/sys_SearchGenerator). When you select the
Generator, the page will refresh and display the Generator parameters. Enter the
following JCR select statement as the Value of the query parameter:
Select rx:sys_contentid, rx:sys_folderid from
rx:file,rx:image,rx:navimage where jcr path like
‘//Sites/EnterpriseInvestments%’

8 In the Template Expander drop list, choose the sys_SiteTemplateExpander
(Java/global.percussion/system/ sys_SiteTempalteExpander). When you select the
Template Expander, the page will refresh and displays the Template Expander
parameters. Enter 301 as the Value of the siteid parameter. Leave the value of the
default_template parameter blank.

9 In the Item Filter drop list, choose public. (This is the default option.).
10 Click the [Save] button to save the Content List.

Implementing the Enterprise Investments Non-binary Content List
Other than the name, the only difference between the Enterprise Investments Non-binary Content
List and the Enterprise Investments Binary Content List is the JCR query. For the Non-binary
Content List, you will specify non-binary Content Types:

 AutoIndex
 Brief
 Calendar
 Contacts
 Event
 External Link
 Generic
 Generic Word
 Home
 Press Release

The JCR query would be:
select rx:sys_contentid, rx:sys_folderid from
rx:rffautoindex,rx:rffbrief,rx:rffcalendar,rx:rffcontacts,
rx:rffevent,rx:rffexternallink,rx:rffgenericword,rx:rffgeneric,
rx:rffhome,rx:rffpressrelease where jcr:path like
'//Sites/EnterpriseInvestments%'

Percussion Software 6

 Converting to Rhythmyx Version 6.5 Features

Implementing the Enterprise Investments Incremental Content List
When publishing an incremental Content List, you want to republish all Content Items that were
modified since the last publish. JCR query language provides a special query option for the from
clause to select all Content Types, nt:base. Thus, the query for an incremental Content List
would resemble the following:

select rx:sys_contentid, rx:sys_folderid from nt:base where
jcr:path like '//Sites/EnterpriseInvestments%'

When defining the Content List, for the Type option, select the Incremental radio button.
Otherwise, use the same procedure as used to implement the Enterprise Investment Binary
Content List.

Implementing the Enterprise Investments Unpublish Content List
When unpublishing Content, you want to select all Content Items that have expired since the last
publish, so you will use the same query as was described in “Implementing the Enterprise
Investments Incremental Content List”.

You will also want to add the sys_publish parameter to the URL with a value of unpublish:
/Rhythmyx/contentlist?sys_deliverytype=filesystem&sys_publish=
unpublish&sys_assembly_context=301&sys_contentlist=rffEiUnpublish

Since you want to unpublish all Content Items on the Enterprise Investments Site that have
expired, you would use the same JCR query as the incremental Content List.

Finally, in the Item Filter field, select the Unpublish Item Filter. This item filter selects only
Content Items that have already been published.

Updating Editions
Once you have defined the new Content Lists, you can remove the existing application-based
Content Lists from your Editions and add the new JCR-query-based Content Lists. For example,
in Version 5.7, FastForward was implemented with the following Editions

Edition Included Content Lists
Full Enterprise Investments Site Root Full

Incremental Enterprise Investments Site Root Incremental

Enterprise Investments Unflagged Site Root Unflagged

Unpublish Enterprise Investments Unpublish

After conversion, the Enterprise Investments Editions would include the following Content Lists:

Edition Included Content Lists
Full Enterprise Investments rffEiUnpublish

rffEiFullBinary
rffEiFullNonBinary

Incremental Enterprise Investments rffEiUnpublish
rffEiIncremental

Percussion Software 7

 Converting to Rhythmyx Version 6.5 Features

Edition Included Content Lists
Enterprise Investments Unflagged rffEiFullNonBinary

NOTE: The Name of this Edition could be changed
to something like “Enterprise Investments Non-
binary” or something similar to indicate the Content
Types that are actually being published.

Unpublish Enterprise Investments rffEiUnpublish
NOTE: This Edition could also be removed.

Percussion Software 8

 Converting to Rhythmyx Version 6.5 Features

Handling Default Variants
If you use Default Variants, you will need to add a temporary Dispatch Template to ensure that
Default Variants are Published correctly. If you do not add this Dispatch Template, Rhythmyx
will publsh all Variants rather than publishing Default Variants when specified.

You can give the Dispatch Template any name you like. It must have one binding. The binding
Variable can have any name, but the value muse be:

$sys.item.getProperty(‘rx:default_variantid’).long

For details about creating a Dispatch Template, see “Dispatch Templates” in the Rhythmyx
Implementation Guide.

Converting Location Schemes to Use JEXL
In Rhythmyx Version 6.5, you can use Java Expression Language (JEXL) to generate locations.
For details about JEXl, see (JEXL URL). (The currently supported version of JEXL is
JEXL 1.0.) For details about writing JEXL expressions, see “Bindings” in the Rhythmyx
Implementation Guide. For details about implementing Location Schemes using JEXL, see
“Defining Contexts and Location Schemes”.

While in Rhythmyx Version 5.7 and earlier, most Location Schemes were implemented using the
sys_casGenericAssemblyLocation generator. This Location Scheme generator requires a
supporting Rhythmyx application to generate the location data. In Rhythmyx Version 6.5, you
can achieve the same effect with a simple JEXL expression that you can write directly in the
Location Scheme parameter.

To illustrate the conversion of Location Schemes, we will examine the Generic Location Scheme
in the Publish Context of the FastForward implementation in Rhythmyx Version 5.7 and the
JEXL-based Location Scheme used in Rhythmyx Version 6.5.

In Rhythmyx Version 5.7, the Generic Location Scheme used the
sys_casGenericAssemblyLocation generator.

Generic Location Scheme in Rhythmyx Version 5.7

Percussion Software 9

 Converting to Rhythmyx Version 6.5 Features

The resource parameter specifies the resource that generates the data used to generate the
location. In this case, the resource is in the default_full_location resource in the application
rxs_SupportPub. The following graphic illustrates the mapping of this resource:

Mapping of the default_full_location resource

In this resource:

 The sys_casGetSiteBaseUrl UDF retireves the base URL of the Site from the Site
registration.

 The rxs_SieFolderAssembly UDF retrieves the Content Explorer Folder path to the
Content Item.

 If the Variant being published specifies a prefix or a suffix, they are mapped directly
from the Repository to the output XML document.

 If the Content Item being published has a suffix, it is mapped directly from the
Repository to the output XML document.

 If the Content Item being published has a filename field and that field has a value,
that value is mapped directly to the output XML document; otherwise, the published
filename is generated by concatenating the string “page” with the Content Item’s ID.

In Rhythmyx Version 6.5, a JEXL expression acheives the same result:
$sys.pub_path + $sys.template.prefix + 'item' +
$sys.item.getProperty('rx:sys_contentid').String +
$rx.location.getFirstDefined($sys.item,'rx:activeimg_ext,
rx:sys_suffix', '.html')

Percussion Software 10

 Converting to Rhythmyx Version 6.5 Features

To use a JEXL expression, you must specify the sys_JexlAssemblyLocation generator.

In the example expression:

 The variable $sys.pub_path generates the publication path of the Content Item.
This one JEXL variable accomplishes the same goal as the sys_casGetSiteBaseUrl
and rxs_SiteFolderAssembly UDFs in the Version 5.7 Location Scheme. (Note that
the variable $sys.path could also be used. In general, $sys.pub_path is preferable
because it will output the value of the custom property sys_pubFilename while
$sys.path outputs only Foldername.)

 The variable $sys.template.prefix retrieves the value of the Prefix field in
the Template being published, if that field has a value. This value was mapped
directly in the resource in the Version 5.7 Location Scheme. Note that this
expression does not use the Suffix field of the Template, but that could be included in
the expression using $sys.template.suffix.

 To generate the file name, the string “item” is concatenated with the Content Item ID
(which is converted to a string): …'item' +
$sys.item.getProperty('rx:sys_contentid').String….

 To determine the extension of the output file, the function
$rx.location.getFirstDefned is is used. The first parameter of this
function is the Content Item being published ($sys.item). The last parameter is a
default used if none of the other parameters result in a value. The remaining
parameters are the Content Item fields to check for a value. The valued used is the
value in the first field in the list that contains a value. In this expression, the fields
activeimage_ext and sys_suffix are specified. If the field activeimage_ext contains a
value, that value will be used. If the field sys_suffix contains a value, that value will
be used. If niether of these fields contains a value,the default value (.html) is used.

JEXL Variables Commonly Used in Location Schemes
The following JEXL variables are commonly used when defining a Location Scheme

Variable Type Description
$sys.item javax.jcr.Node Contains the fields and children of the current Content Item.

Each field, and each child, is considered a property of the
$sys.item variable.
Use the getProperty method to refer to a field of the Content
Item. Usually, you will use the getString method to return a
string, although you can also return other Java data types. For
example, $sys.item.getProperty(displaytitle).getString refers to
the value of the displaytitle field of the current Content Item as a
string value. For details see the JavaDoc for javax.jcr.Property
in the JSR-170 JavaDoc.

$sys.crossSiteLink Booelan True if the Dependent Content Item in the ActiveAssembly
Relationship is on a different Site. Generally useful when
generating a URL rather than a delivery location.

$sys.path String The path of the Folder to the Site root Folder. Outputs only the
name of the Folder, not the Published name if the two are
different. See also $sys.pub_path.

$sys.pub_path String The publication path of the Content Item. Is essentially the
same as the $sys.path variable, but outputs the published name
of any Folder that has a value specified for the sys_pubFilename

Percussion Software 11

 Converting to Rhythmyx Version 6.5 Features

Variable Type Description
custom parameter.

$sys.site.id IPSGuid ID of the Site, as a GUID

$sys.site.path String path in the Folder tree from the current Content Item to the Site
Folder

$sys.site.url String URL of the Site defined in the Site Address field in the Site
registration.

$sys.site.globalTemplate String Name of the Global Template of the Site. If the Global
Template is undefined, returns null.

$sys.template.prefix String Location prefix from the Template definition.

$sys.template.suffix String Location suffix from the Template definition.

$sys.variables Map<String,String>[] Provides access to context variables for the current Site.

JEXL Functions Commonly Used in Location Schemes
The JEXL functions most commonly used when defining a location are the functions of
$rx.location:

$rx.location.generate
Returns String

Generates the target URL for the assembly item using the default Template.

Can be specified with the template parameter, in which case the link will be generated to the
specified Page Template. The value of the Template parameter must be the name of a page
Template.

Name Type Description
targettem IPSAssemblyItem The target Content Item to which the URL will point.

targetTemplate String The specific Template to which the URL will point.

$rx.location.generate
Returns String

Additional signature of the $rx.location.generate function that allows the user to specify the data
used to generate the URL.

Name Type Description
templateinfo String The Page Template to which the URL will point.

item Node The target Content Item to which the URL will point.

folderPath String The Folder location to which the URL will point.

filter String The Item Filter to use when generating the URL.

siteid Number The ID of the Site to which the URL will point.

context Number The publishing Context for which to generate the URL.

Percussion Software 12

 Converting to Rhythmyx Version 6.5 Features

$rx.location.getFirstDefined
Returns String

Looks through the set of fields specified to find a field that contains a value. The first field in the
list specified that contains a value will be used. If none of the specified fields contains a value,
the default value will be used.

Name Type Description
item Node The Content Item whose fields to search.

listofproperties String Comma-separated list of fields to search for a value.

defaultvalue String default value to use if none of the specified fields contains a
value.

$rx.location.siteBase
Returns String

Returns the base URL for the specified Site. Can include the modify parameter. If the modify
parameters is set to yes [siteBase($sys.assemblyitem, yes)], the protocol, host, and
port are not included in the returned URL.

Name Type Description
siteid String The Site whose base URL to return

modify String If the value of this parameter is "yes", the protocol, host, and
port will be stripped from the base URL. Otherwise, the
protocol, host, and port are included. (Optional)

You can also used Velocity tools functions ($tools); for details see see the Velocity tools
documentation (http://jakarta.apache.org/velocity/tools/index.htm).

The following tools are available:

Tool Class
$tools.alternator org.apache.velocity.tools.generic.AlternatorTool

$tools.date org.apache.velocity.tools.generic.DateTool

$tools.esc org.apache.velocity.tools.generic.EscapeTool

$tools.mill org.apache.velocity.tools.generic.IteratorTool

$tools.list org.apache.velocity.tools.generic.ListTool

$tools.math org.apache.velocity.tools.generic.MathTool

$tools.number org.apache.velocity.tools.generic.NumberTool

$tools.render org.apache.velocity.tools.generic.RenderTool

$tools.sorter org.apache.velocity.tools.generic.SortTool

$tools.parser org.apache.velocity.tools.generic.ValueParser

You may also define customg JEXL functions, which begin with the prefix $rx. For details about
developing custom JEXL functions, see the Rhythmyx Technical Reference.

Percussion Software 13

 Converting to Rhythmyx Version 6.5 Features

Converting to Velocity Assembly
Converting assembly to use Velocity Templates is a three-step process:

1 Implement new Managed Navigation Templates using Velocity.
2 Convert Global Templates to Velocity.
3 Convert Local Templates to Velocity.

Note that Steps 1 and 2 must be done together. Once Managed Navigation and Global Templates
are converted, you can begin publishing using these Templates while continuing to use XSL
Variants. You can then convert XSL Variants at your leisure.

Implementing Managed Navigation Templates in Velocity
Before implementing new Managed Navigation Templates, create a new Managed Navigation
Slot. A Managed Navigation Slot uses the sys_ManagedNavContentFinder. For details about
creating a Slot, see “Creating Slots” in the Rhythmyx Version 6.5 Implementation Guide. For
details about Managed Navigation Slots, see “Managed Navigation Slot” in the Rhythmyx Version
6.5 Implementation Guide. You can also use the Managed Navigation Slot in the Version 6.5
reference server as a model.

For details about implementing Managed Navigation Templates, see “Creating Managed
Navigation Templates in the Rhythmyx Version 6.5 Implementation Guide. In the Rhythmyx
Workbench, model Templates for the following common Managed Navigation Templates are
provided:

 breadcrumbs (breadcrumb nav)
 top navigation (top nav)
 left navigation (left nav)

You can base your own Managed Navigation Templates on these models.

Converting Global Templates to Velocity
Converting Global Templates to Velocity is a two-step process:

1 Create new Global Template objects in the Rhythmyx Workbench. When creating
the Global Template objects, specify the existing Global Template HTML as the
source for the Template. For example, when converting the Enterprise Investments
Global Template, we would specify
<Rhythmyxroot>/rxs_GlobalTemplates. For details about creating Global
Template objects, see “Creating Global Templates” in the Rhythmyx Version 6.5
Implementation Guide.

Percussion Software 14

 Converting to Rhythmyx Version 6.5 Features

2 In the Template object in the Workbench, on the Source tab, convert XSpLit markup
to Velocity markup:
a) For local content, convert XSpLit field markup [psx-fieldname] to Velocity

macro markup [#field (“fieldname”)]. In Global Templates, the most common
local content is the title, which generally uses the #displayfield macro. For
example, in the Enterprise Investments Global Template, the title tag is converted
from <title>psx-shared/displaytitle</title> to
<title>#displayfield(“displaytitle”)</title>.

NOTE: The #displayfield macro used in this example is used for fields that should not
be modified in Active Assembly. The #field or #field_if_defined macros are used
for fields that are eligible for Active Assembly. For additional details about Velocity markup,
see “Creating Templates” in the Rhythmyx Implementation Guide.

b) Slot markup is converted from XSpLit formatting
<!-- start slot slotname -->
<!-- start snippet wrapper -->
Slot
Name
<!-- end snippet wrapper -->
<!-- end slot slotname -->

to Velocity markup:
#slot(“SlotName” “” “” “” “”
“template=NavTemplateName”)

For example, in the Enterprise Investments Global Template, the Top Navigation
is converted from

<!-- start slot nav_top -->
<!-- start snippet wrapper -->
Top
Nav
<!-- end snippet wrapper -->
<!-- end slot nav_top -->

to
#slot(“rffNav” “” “” “” “” “template=rffSnEiTop”)

c) Convert references to static files (such as links to Cascading Stylesheet or
JavaScript files) to use Template Bindings. For details about Bindings, see
“Bindings” in the Rhythmyx Version 6.5 Implementation Guide. For details about
the use of Bindings to implement references to static files, see “Converting
References to Static Files”. You can continue to use the existing variables, but
must define those variables in the Bindings of the Global Template.

Percussion Software 15

 Converting to Rhythmyx Version 6.5 Features

The following code snippets show key sections of the Enterprise Investments Global Template
before conversion and after:

Enterprise Investments Global Template Before Conversion
<html lang="en">
 <head>
 <title>psx-shared/displaytitle</title>
 <meta http-equiv="Content-Type" content="text/html;
charset=iso-8859-1" />
 <meta name="keywords" content="Key Words" />
 <meta name="description" content="Description" />
 <link rel="stylesheet" psx-
href="$rxs_navbase/css/rxs_styles.css"
href="web_resources/css/rxs_styles.css" type="text/css" />
 <script psx-src="$rxs_navbase/js/mouseover.js"
language="javascript" type="text/javascript">;</script>
 </head>
<body>
 <!-- start slot nav_preload -->
 <!-- start snippet wrapper -->
 <div slotname="nav_preload" psxeditslot="no" />
 <!-- end snippet wrapper -->
 <!-- end slot nav_preload -->
<div id="EIPage">
 <div id="TopPortion">
…
 <!-- =========== HORIZONTAL NAV STARTS HERE =========== --
>
 <div id="horizontal_nav">
 <!-- start slot nav_top -->
 <!-- start snippet wrapper -->
 Top Nav
 <!-- end snippet wrapper -->
 <!-- end slot nav_top -->
 </div>
 </div>
 <div id="MainPortion">
 <div id="LeftSide">
 <div id="LeftNav">
 <!-- start slot nav_left -->
 <!-- start snippet wrapper -->
 nav
left

 <!-- end snippet wrapper -->
 <!-- end slot nav_left -->
 </div>
…
 </div>
 <div id="MainBody" psx-localtemplate="yes">Local Body
Template Here</div>
 <div id="SiteFooter">
 <!-- start slot nav_bottom -->
 <div id="nav_lbottom">
 <!-- start snippet wrapper -->

Percussion Software 16

 Converting to Rhythmyx Version 6.5 Features

 Bottom
Nav
 <!-- end snippet wrapper -->
 </div>
 <!-- end slot nav_bottom -->
 </div>
 </div>
</div>
</body>
</html>

Enterprise Investments Global Template after Conversion
<html lang="en">
 <head>
 <title>#displayfield("displaytitle")</title>
 <meta http-equiv="Content-Type" content="text/html;
charset=UTF-8" />
 <meta name="keywords" content="#displayfield('keywords')" />
 <meta name="description"
content="#displayfield('description')" />
 <meta content="Percussion Rhythmyx" name="generator"/>
 <link rel="stylesheet" href="$rxs_navbase/css/rxs_styles.css"
type="text/css" />
 <script src="$rxs_navbase/js/mouseover.js"
 language="javascript" type="text/javascript">;</script>
 </head>
 <body>
 #slot("rffNav" "" "" "" "" "template=rffSnNavPreload")
 <div id="EIPage">
 <div id="TopPortion">
…

 <div id="horizontal_nav">
 #slot("rffNav" "" "" "" "" "template=rffSnEiTop")
 </div>
 </div>
 <div id="MainPortion">
 <div id="LeftSide">
 <div id="LeftNav">
 #slot("rffNav" "" "" "" "" "template=rffSnEiNavLeft")

 </div>
…
 </div>
 <div id="MainBody">
 #inner()
 </div>
 <div id="SiteFooter">
 #slot("rffNav" '<div id="nav_lbottom">' "" "" '</div>'
"template=rffSnEiNavBottom")
 </div>
 </div>
 </div>
 </body>
</html>

Percussion Software 17

 Converting to Rhythmyx Version 6.5 Features

Updating Slots
Before converting Local Variants, you should update the Slots in the Workbench. When using
Velocity to assemble Content, each Slot must include a Content Finder. A Content Finder is an
extension that retrieves the Content Items to be included in the Slot. For most Slots, you should
specify the sys_RelationshipContentFinder, but there are some exceptions:

 For the Managed Navigation Slot, specify the sys_ManagedNavContentFinder
 For Automated Slots, specify either the sys_AutoSlotContentFinder (if you want to

use a JCR query to popular the Slot) or the sys_LegacyAutoSlotContentFinder (if you
want to use a Rhythmyx query resource to populate the Slot.

 If you have Sites in multiple languages, use the sys_TranslationContentFinder to
generate automatic links to translations of Content Items in different Languages.

Converting Local Variants to Velocity Templates
Rhythmyx Version 6.5 includes a Variant to Template Migration Tool that creates new Velocity
Templates based on existing XSL Variants.

Note that in Rhythmyx Version 5.7 and earlier, even though multiple Variants could use the same
assembly resource, each combination of Content Type and Variant required a unique Variant
registration. Multiple registrations are no longer necessary in Rhythmyx Version 6.5. Multiple
Content Types can be associated with a single Template. Thus, the Variant to Template
Migration Tool will create only one Velocity Template for each assembly resource; each Content
Type that has a Variant associated with that resource will automatically be associated with the
new Template.

NOTE: While Managed Navigation Variants are listed in the Variant to Template Migration
Tool, these Variants should not be converted because Managed Navigation works differently
under Velocity than it does under XSL. Managed Navigation should be reimplemented in
Velocity as discussed in “Implementing Managed Navigation Templates in Velocity”on page 14,
rather than converted.

The Variant to Template Migration Tool imports the source HTML for the Variant into the
Template and displays it on the Source tab of the Template editor.

Percussion Software 18

 Converting to Rhythmyx Version 6.5 Features

To run the Variant to Template Migration Tool:

1 Start a browser and enter the URL of the Rhythmyx Admin page:
http://host:port/Rhythmyx/admin. where host is the name or IP
address of the machine where Rhythmyx resides and port is the port on which the
Rhythmyx server listens. You will have to log in to get to the admin page.

Rhythmyx admin page

2 Click the Run Variant to Template Migration Tool link.
Rhythmyx displays the Variant to Template Migration Tool page.

Variant Converter page

Percussion Software 19

http://host:port/Rhythmyx/admin

 Converting to Rhythmyx Version 6.5 Features

Field Descriptions
Selected Checkbox. Check this box to select an XSL Variant to convert to a Velocity Template.

Variant Name Read-only. Name of the XSL Variant. If multiple XSL Variants use the same
Rhythmyx assembly resource, all will be listed in this field.

Template Name Name of the Velocity Template that will be created in the Rhythmyx Version 6.5
Workbench. The name defaults to the name of the XSL Variant with the suffix “_v”. You can
change the name of the Template. (NOTE: Do not change the name of the Template to match
the name of the Variant. Multi-Server Manager will not package your Templates and Variants
properly if the names of Templates match the names of Variants. Also, do not change the name
of the Variants. Changing the name of your Variants could also cause errors when packaging
Mulit-Server Manager archives.)

Resource URL of the assembly resource specified by the XSL Variant

Converting Variants
To convert Variants

1 Start the Variant to Template Migration Tool.
2 Check the Selected box in the row of the Variants you want to convert.

NOTE: Percussion Software recommends that you do not convert Managed
Navigation Variants

3 Optionally, change the default name of one or more Templates. For example, the
default name for the P_EI_Generic Template created from the P-EI Generic Variant
is P_EI_Generic_v. To conform to the new naming conventions, the name of the
Template could be changed to rffPgEIGeneric.

(NOTE: Do not change the name of the Template to match the name of the Variant. Multi-
Server Manager will not package your Templates and Variants properly if the names of
Templates match the names of Variants. Also, do not change the name of the Variants.
Changing the name of your Variants could also cause errors when packaging Multi-Server
Manager archives.)

4 Click the [Convert] button to launch the conversion process.

Percussion Software 20

 Converting to Rhythmyx Version 6.5 Features

5 When the this process is complete, Rhythmyx returns the results page. This page
displays the results of the conversion and any errors that occurred during the
conversion process.

Variant Converter results page

6 Next, update the HTML in the Source tab of each Template, substituting Velocity
markup for XSpLit markup. You will also need to add Bindings to the Template to
support image and hypertext links and other processing. For details about Velocity
markup, see the following topics in the Rhythmyx Implementation Guide:

For information about… See this topic
Implementing Snippets “Implementing Snippet Templates”

Implementing Pages “Creating Page Templates”

Implementing hypertext links “Implementing Complex Snippets”

Implementing image links “Implementing a Binary Template”

Bindings in general “Bindings”

Automated Slots “Creating an Automated Slot”

Including Slots on a Template “Creating Page Templates”

Default Templates (implemented in Rhythmyx
Version 6.5 using Dispatch Templates)

“Dispatch Templates”

Percussion Software 21

 Converting to Rhythmyx Version 6.5 Features

When marking up the Template HTML with Velocity code, be sure to check the
Mapper on the original Variant resource for processing logic, as well as the XSL. If
you find additional processing logic, you will need to re-implement it in one of the
following ways

 develop Bindings;
 develop new Velocity macros;
 develop additional inline Velocity.

You will need to assess the processing logic to determine which option is best suited
to produce the desired results.
Also, when marking up Template HTML with Velocity, consider implementing
custom Velocity macros to reduce the code in each Template. For example, suppose
your Page Templates share a common HTML header:

<head>
 <title>#displayfield("displaytitle")</title>
 <link href="$sys.variables.css/Public.css"

rel="stylesheet" type="text/css" />
</head>

You could create a macro such as the following:
Standard Header used in regular Snippets
#macro(snippet_head $field_parm)
 <head>
 <title>#displayfield("$field_parm")</title>
 <link href="$sys.variables.css/Public.css"

 rel="stylesheet" type="text/css" />
 </head>
#end

You could then use the following formatting in the HTML:
<html>
 #snippet_head("displaytitle")
 <body>
…

Percussion Software 22

 Converting to Rhythmyx Version 6.5 Features

7 The final step in the process is to repoint ActiveAssembly Relationships from the
Variant to the new Template. Use the RhythmyxVariantConverter tool
(<Rhythmyxroot>\VariantConverter\RhythmyxVariantConverter.exe or
<Rhythmyxroot>/VariantConverter/RhythmyxVariantConverter.sh) to complete this
conversion. This tool uses a properties file. To run the conversion:
a) Open the file <Rhythmyxroot>/VariantConverter/variantsconverter.properties in

a simple text editor.
b) Update the Login Account Information:

hostName=name or IP address of Rhythmyx machine
port=Rhythmyx port
loginId=username (specified user must have design
 rights)
loginPw=password of the specified user
useSSL=false (default; change to true if you want to use
 SSL
serverRoot=Rhythmyx (this property should not be
modified)
communityId=ID of the Community of the Content Items you
want to convert. This property is optional. If not
specified, the last Community logged by the specified
user will be used.

c) Specify the Workflows and Transitions used by when repointing Content Items
in the Public State. (Content Items that are not Public do not have to be
Transitioned to be converted.) Use the following pattern:
Workflow_Name=TransitionfromPublic;TransitiontoPublic

where
Workflow_Name is the name of a Workflow used by Content Items whose
Active Assembly Relationships you want to repoint
TransitionfromPublic is the name of the Transition to use to move the
Content Item from the Public State to an editable State (typically, QuickEdit is
used for this purpose).
TransitiontoPublic is the name of the Transition to use to return the
Content Item to the Public State after processing (typically, ReturnToPublic is
used for this purpose).

d) In the variantMap property, specify which Variants should point to which
Template. Use the pipe character (|) to separate the Variants from the Templates.
Use commas to separate each Variant/Template pair. For example, the default
mapping property:
variantMap=301|501,302|502

repoints Active Assembly Relationships that refer to Variant ID 301 to use
Template ID 501 and repoints those that refer to VariantID 302 to use Template
ID 502. Note that the specified Templates must be Page Templates.

NOTE: Use the Properties view in the Rhythmyx Workbench to access these IDs. The
Properties view is available by default under the Navigation view, next to the Snippet Drawer.
Select the Varaint or Template whose ID you need in the Navigation view, then in Properties
view, select the ID property. Right-click and choose Copy from the popup menu. You can
then paste the ID into the variantsconverter.properties file. The entire property will be pasted:
 ID 0-4-343 (17179869527)

Percussion Software 23

 Converting to Rhythmyx Version 6.5 Features

Only the three-digit ID number is required. Ther rest of the text must be removed or the
RhythmyxVariantsConverter will fail.
In the example above, the ID is 343. The rest of the text must be removed.

e) You can also specify specific Content Items whose ActiveAssembly
Relationships you want to repoint. Specify the ID of these Content Items in the
contentId property of the variantsconverter.properties file. Use commas to
separate mulitple IDs. You can access Content Item IDs by viewing the Content
Item properties in Content Explorer.

f) After you have defined all of the conversion properties, run
RhythmyxVariantsConvereter.exe or RhythmyxVariantsConverter.sh.

Percussion Software 24

	About Converting to Rhythmyx Version 6.5 Features
	Assumptions
	Reference Server
	Preparing to Implement the Conversion
	Converting Content Lists to Use JCR Queries
	Implementing the Enterprise Investments Full Binary Content List
	Implementing the Enterprise Investments Non-binary Content List
	Implementing the Enterprise Investments Incremental Content List
	Implementing the Enterprise Investments Unpublish Content List
	Updating Editions
	Handling Default Variants

	Converting Location Schemes to Use JEXL
	JEXL Variables Commonly Used in Location Schemes
	JEXL Functions Commonly Used in Location Schemes

	Converting to Velocity Assembly
	Implementing Managed Navigation Templates in Velocity
	Converting Global Templates to Velocity
	Updating Slots
	Converting Local Variants to Velocity Templates
	Converting Variants

